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We present a fresh theoretical analysis of fully developed forced convection in a fluid- 
saturated porous-medium channel bounded by parallel plates, with imposed uniform 
heat flux or isothermal condition at the plates. As a preliminary step, we obtain an 
'exact ' solution of the Brinkman-Forchheimer extension of Darcy's momentum 
equation for flow in the channel. This uniformly valid solution permits a unified 
treatment of forced convection heat transfer, provides the means for a deeper 
explanation of the physical phenomena, and also leads to results which are valid for 
highly porous materials of current practical importance. 

1. Introduction 
Because of its relevance to a variety of situations (e.g. geothermal systems, thermal 

insulation, coal and grain storage, solid matrix heat exchangers, nuclear waste 
disposal), convection in porous media is a well-developed field of investigation. The 
literature on the topic of forced convection is surveyed in chapter 4 of Nield & Bejan 
(1992). 

Studies on forced convection in a channel progressed chronologically towards 
complex models. The groundbreaking study by Kaviany ( 1985) presented an analytical 
solution of the transport equations based on the Brinkman-extended Darcy flow 
model. An important step towards predicting transport phenomena in more general 
and complex situations was taken by Vafai & Kim (1989), who presented a closed form 
solution of the Brinkman-Forchheimer-extended Darcy momentum equation and the 
associated heat transfer equation for the case of fully developed flow with uniform heat 
flux at the boundaries. The analysis was limited to the case of effective viscosity equal 
to fluid viscosity. (It is true that one can extend their solution to an effective viscosity 
model; this involves redefining their Darcy number and inertia parameter.) Vafai & 
Kim assumed a boundary-layer-type developed flow and as a consequence their 
solution is inaccurate when the inertia parameter is small and the Darcy number 
approaches and exceeds the value unity. In the absence of an accurate general 
theoretical solution one has to rely on direct numerical simulation. Noteworthy in this 
line are the numerical (and experimental) studies by Poulikakos & Renken (1987) and 
Renken & Poulikakos ( 1988), who employed a finite-difference formulation of the 
differential equations. These authors allowed for viscosity variations, and they were 
able to deal with developing flow and to incorporate expressions for the permeability 
and Forchheimer coefficient pertinent for packed beds of spheres, and they performed 
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calculations for parameter values appropriate for their experiments. Renken & 
Poulikakos found a substantial degree of agreement between their observations and 
their predictions, but they were limited to a special type of medium and to a 
comparatively limited range of parameters, so it is not obvious how far their work 
generalizes to other porous media. 

Although the majority of existing porous materials do satisfy the implicit restrictions 
inherent in Vafai and Kim’s solution, there are at least three practical examples of 
materials with high permeabilities that do not. The first is an aluminium alloy porous 
foam for building a microporous heat sink. This device, being developed jointly by 
Lage’s research group at Southern Methodist University and Texas Instruments Inc., 
is designed for cooling the next generation of high-power electronic components (Lage 
er al. 1996). Preliminary laboratory tests (Weinert & Lage 1994) indicate permeabilities 
of compressed foams as high as 8 x m2. For a 1 mm thick foam layer, the 
equivalent Darcy number is equal to 8. Another example of high permeability material 
is provided by a resorbable microporous intravascular stent for gene therapy 
applications (Rajasubramanian er al. 1994). This biocompatible material, based on a 
blend of poly-lactic acid and poly-caprolactone, is being developed at the Southwestern 
Medical Center at Dallas. Finally, the recent work by Givler & Altobelli (1994) 
demonstrated that for high-permeability foam the effective viscosity is about 10 times 
the fluid viscosity. Therefore, a theoretical solution that is general enough to yield 
accurate results even for highly permeable media is of fundamental and practical 
interest. This is the object of the present paper. (It extends the results reported by 
Nakayama, Koyama & Kuwahara (1988) to include the effects of quadratic drag (the 
Forchheimer extension).) 

We reconsider the analysis presented by Vafai & Kim (1989) without invoking their 
boundary-layer assumption. We then proceed to find a more general theoretical 
solution. Such a solution has the advantage that the way in which inertial and 
boundary-friction effects affect the velocity and temperature profiles, and the Nusselt 
number, can be readily unravelled, for a general porous medium. Furthermore, this 
solution serves as a benchmark for assessing numerical schemes simulating more 
complex transport phenomena within high-permeability media. Our solution is based 
on scaling which avoids the use for this purpose of the mid-line velocity (which cannot 
be related theoretically to the applied pressure gradient until the solution has been 
calculated), and this is an obvious practical advantage in the laboratory situation. 

2. Isoflux surfaces: theory 

equations, for one dimensional motion, namely 
We start by making a fresh scaling of the steady-state momentum and energy 

The notation largely follows that used by Nield & Bejan (1992) where K is the 
permeability, c, is the inertial coefficient, p is the fluid density, and K, is the effective 
thermal diffusivity of the saturated porous medium. The asterisks denote dimensional 
variables. We assume that we have flow in the positive x-direction (Darcy velocity, 
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u*( v*) > 0) resulting from a constant applied pressure gradient G = -dp/dx. An 
effective viscosity ,C is introduced in the Brinkman term. The axial component of heat 
conduction is neglected; this is justified if a Pklet number (based on the channel width 
as lengthscale) for the flow is sufficiently large. Isotropy, homogeneity, and local 
thermodynamic equilibrium are assumed. 

The effect of thermal dispersion was not considered by Vafai & Kim (1989) nor by 
Poulikakos & Renken (19871, and neither is it included in the present analysis. We 
know of no reason why this effect should alter our conclusions dramatically. The effect 
certainly does not affect the exact fully-developed velocity profile. The transverse 
dispersion may be taken into account by increasing the thermal diffusivity by a 
percentage which is of order of magnitude equal to a PCclet number based on the 
particle diameter as lengthscale. For the fully developed flow treated in this paper, the 
effect of longitudinal dispersion is not expected to be important in normal situations, 
but, as was emphasized by a referee, there are situations where the effect is likely to be 
important. 

The flow, as shown in figure I ,  is between infinite horizontal plates at y = H and 
y = - H and a uniform heat flux 4’’ (into the porous medium) is imposed at each plate. 
The flow is symmetrical about the midplane, and so the boundary conditions are 

d U *  dT* 
-- = O  at y* = O ,  
dy* - OY (4) 

where k is porous medium thermal conductivity, and q” is constant. We introduce non- 
dimensional variables defined by 

and the non-dimensional numbers 

Thus, M is a viscosity ratio, Da is a Darcy number, and we may refer to F as a 
Forchheimer number. 

In non-dimensional form, equation ( 1 ) becomes 

d2u u 

dy2 Da 
M----FM~+ 1 = 0. (71 

This equation can be integrated to give : M(du/dj?), - u2/Da-g Fu3 + 2u = C, where C 
is a constant. This can be written in the form 

du 

dY 
- = - (2F/3M)’” [P(u)]”~, 

where the cubic polynomial P(u) = (u  - b,) (u-b2)  (u- bJ ,  where the roots b,, b,, b, are 
constants satisfying b, < b, < b, and b, = u(0). This is consistent with the boundary 
condition (4), and the requirement that duldy be real and negative when 0 < u < u(0). 
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FIGURE 1 .  Schematic of a fluid saturated porous medium channel 
isoflux or isothermal plates. 

The values of b, and b, are found in terms of 

bounded by two horizontal 

b, from the equations 
h, + 6,  + h, = - 3/(2FDa),  and b, h, + h, b, + h, b, = - 3/F.  Hence, 

Using again the fact that b, = u(0), we can integrate (8) to obtain 

( 2F/3M)”% = [P(r)]-1/2 dt. 

In a similar fashion, using the boundary condition ( 3 ) ,  we obtain 

(2F /3M)112~3  = 1’ [P(t)]-liz dr. 

The integrals in (10) and ( 1  1 a )  can be expressed in terms of standard elliptic integrals, 
fc$\a), with the aid of formula 17.4.63 of Abramowitz & Stegun (1965). For example, 
equation ( 1  1 a )  can be written as 

We may now use the values off($\a) in table 17.5 of that book, but it is more 
convenient to evaluate the integrals directly by numerical quadrature. We emphasize 
that this evaluation can be made as precise as we wish by suitable choice of integration 
step-size since the only error is that due to round-off. The ‘exactness’ of our solution 
and its usefulness for benchmarking are not affected. The amount of computational 
effort is virtually negligible (at least two orders of magnitude less) in comparison with 
that involved in numerical integration of the full partial differential equations. Given 
the values of Da, F and M ,  the value of 6,  is given in an inverse fashion by ( l o ) .  Pairs 
of values ( y, u )  determining the velocity profile can then be obtained from ( 1 1  ). 

With the velocity distribution found, we can now find the temperature distribution. 
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Following the exposition of Bejan (1984, pp. 82-89), we define a mean velocity U and 
temperature T,, by 

T, = &r u* T" dy", 

and the Nusselt number Nu by 

NU = 2Hq"/k(7;,- T,), ( 1 4 )  

where ql, is the temperature at the wall ( y  = 1). It is worth noting that Vafai & Kim 
(1989) used a Nusselt number (which we denote by Nuh) based on the hydraulic 
diameter, which here is 4H,  i.e. twice the distance between the plates. Hence 
NU, = 2Nu. 

It follows from the first law of thermodynamics that 

C7T*/dx* = K, q " / ( k H U ) .  (15) 

f =  (T*-Tu,)/(Tm-Tu,), U = u*/U. (16) 

We now define a non-dimensional temperature f and a new non-dimensional 
velocity zi by 

Notice that this new non-dimensional velocity used in the energy equation, 22,  is related 
with the non-dimensional velocity used in the momentum equation, u, by 
zi(y) = u(-y)/st  u ( y )  djs. Equation (2) now takes the form 

This must be solved subject to the boundary conditions 

d f  
-(O) = 0. 
dp f(1) = 0, 

The solution is 

Finally, the Nusselt number Nu can be found by substituting for zi and f in the 
compatibility condition 

zifdy = 1. s: 
We solved the integrals in ( 10) and (1 1 a) using Romberg's numerical integration 
method (Stoer & Bulirsch 1980), on a semi-open interval (these are improper integrals 
since the integrands are singular at 14 = b,), with extended midpoint rule. For simple 
cases, we checked the results obtained with Romberg's method against results obtained 
with the more robust (and less efficient) Simpson's fourth-order open formula. We 
applied the latter method for solving the integrals appearing in (19) and (20). 

As a check on our procedure, we recover the known analytical solution for the case 
F = 0. As F+O, we have, from (9), bl+(2Da-b,) and b,-( -;F'Da-l). Then an 
asymptotic expansion, valid as F-0,  of the right-hand side of (10) leads to: 
A = Dasech (A) ,  where: h = (MDa)-liz, and A = (Da-b,). Note that the substitution: 
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M’ = ( D a - t ) / A ,  facilitates the integration. Likewise, (1 1) gives: u = Da-Acosh(AjJ). 
Hence, we obtain 

This agrees with the expression for the velocity distribution obtained by Kaviany 
(1985). The solution, equation 8 of Vafai & Kim (1989), fails a similar check. It leads 
to the prediction that the mid-line velocity differs from the correct value as the 
Forchheimer parameter tends to zero ; the discrepancy is of order exp ( - Da-’”), and 
this is significant when Da is of order 0.1 or larger. In terms of dimensional quantities, 
(21) is equivalent to 

(22) 1. cosh [(,U/,EK)’”J~.*] 
Y cosh [(p/,G,K)”2 H] 

u* = - 

We proceed with further checks of our solution. As Da--1, (21) gives 
u - (1 -y2) /2M, implying that u* + (G/2,2) ( H 2  -y2),  a4 expected for plane Poiseuille 
flow for a fluid clear of solid material. Further, u+i( 1 -y’), and so, by (19), 
f‘-&Nu(5 - 6y2 + y 3 ) ,  and, by (20), Nu + g, or approximately 4.1 176. This agrees with 
the well-known value of Nu for the clear-fluid problem. 

As Da- 0, equation (21) gives u-Da, (if IyI + l), implying that u* - K G / p ,  as 
expected for Darcy flow. Further, ti- 1, and so, by (19), F-iNu(l  -J,’), and, by 
equation (20),  NU-.^. The final result agrees with equation (4.40) of Nield & Bejan 
(1992). 

For a general value of Da (but still with F - 0 )  we find that in the limit, 

,. Nu 
4h(h - tanh A )  

T =  
cosh A 

and this leads to 
12h(A - tanh A)2 

2h3+ 3h tanh2 h + 15 (tanh A- A )  ‘ 
N14 = 

Eliminating Nu from these two equations yields 

cash Ay 
1 -y2)+2 ___- [ coshh ‘I}. (25a’ 

3h(A - tanh A) 
2A3 + 3 A  tanh2 A + 15 (tanh h - A )  

T =  

These formulae are in agreement with those obtained by Lauriat & Vafai (199 1, p. 3 12). 
However, they wrote, ‘These analytical results are in agreement with the numerically 
obtained results of Kaviany (1985) for laminar flow through a porous channel bounded 
by isothermal plates’, and they went on writing that Nu, (which equals 2Nu) varied 
between the asymptotic values 7.54 (for Newtonian fluid flow) and 9.87 (for Darcian 
flow). In fact, Nu as given by (24) varies from 4.12 ( A  - 0, i.e. for Newtonian fluid flow) 
to 6 (for A - 00, i.e. for Darcian flow), as we would expect. We emphasize that (24) and 
(25 a)  apply only to the case of constant-flux boundaries. These formulae have been 
obtained on the assumption that ST*/clx* is independent of y*. Equivalent formulae 
had already been derived, in the correct context, by Nakayama et a/ .  (1988). 

It is clear that as Da tends to zero the differential equation system becomes singular. 
In this case the Brinkman term is negligible and the velocity profile is flat (slug flow). 
The velocity u is given by the appropriate root of the equation 

FDau‘+u-Da = 0, (25b)  
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u = { - 1 + (1 +4FDa2)1/2)/2FDa. 
namely 

In this case we have, for all values of F, 

li = 1, f = %( 1 -yz), 

The same situation arises as F tends to infinity. 

Nu = 6. (27a) 

* 
3. Isothermal surfaces: theory 

As explained by Bejan (1984, pp. 89-90), consideration of the first law of 
thermodynamics shows that the mean temperature difference must decrease ex- 
ponentially in the flow direction, x (see figure 1 ) :  

T,-T, = (T,-T,)exp[-K, Nu’(x*--s , ) /2H2U],  (276) 

if T, = 
Consequently equation (2) now leads to 

at s* = xl. where Nu‘ is the Nusselt number for isothermal boundaries. 

This holds in place of (17). The boundary conditions, equation (18), still hold. In place 
of (20), the compatibility condition is 

The velocity t i ( j 3 )  is unchanged, but now we have a two-point boundary-value problem 
constituted by equations (28), (18) and (29) .  The solution of this problem, for general 
parameters, is obtained numerically. Equation (28) is discretized in y using a second- 
order finite-differences scheme. We emphasize that once the exact velocity profile has 
been obtained, it is a relatively easy numerical task to obtain the temperature field for 
any choice of thermal boundary conditions. For every (Da, F, M )  group, the 
corresponding velocity profile, obtained previously, is used in (28). Notice that for the 
isothermal case, the two boundary conditions in ( 1 8 )  lead to the trivial solution f = 0. 
This is avoided by writing an expression for the temperature at the first interior node 
near the surfaces as a function of Nu’, via a discretized compatibility condition. The 
problem is now restricted to finding the Nu‘ value that best satisfies the temperature 
condition imposed at y = 1 .  We note in passing that a shooting method, as suggested 
by Bejan (1984), is also possible although not so straightforward. Some theoretical 
solutions for extreme flow cases are now described. For the particular case F = 0, 
Da + 0, the solution is : = fn  cos fny, Nu’ = fn2 - 4.93. For F = 0, Da --f co, the value 
of Nu‘ is 3.77 (see for instance table 3.2 of Bejan 1984). These results were used to 
verify the accuracy of our finite-differences scheme. 

4. Isoflux surfaces : numerical results and discussion 
For general values of F and Da numerical calculation is necessary. In general, the 

numerical quadrature is straightforward, but, as noted above, b, has to be found from 
(10) in an inverse fashion. As one would expect, there are severe numerical difficulties 
as one approaches a parameter value for which the system is singular. In the case of 
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FIGURE 2. Effect of Forchheimer number, F, on the Nusselt number, Nu for isoflux surface case. 

large F, these are associated with the fact that the roots b, and b, coalesce in the limit. 
It is fortunate that, because the asymptotic results are available, we need not persist 
with the difficult calculations. 

The results of our calculations for representative values of the parameters are 
displayed in figures 2-5. The trends shown are in conformity with our expectations. 
Figure 2(a) gives values of the Nusselt number, Nu, for Darcy number equal to 1, a 
rather large value. As the Forchheimer number F tends to zero, each curve approaches 
a horizontal asymptote. The asymptotic values of Nu are 4.431, 4.159, 4.122, for 
M =  0.1, 1 ,  10, respectively, in agreement with (24) with h = lo1'', 1, 
respectively. As F becomes large, the value 6 is approached. The approach is slow for 
large values of M .  The effect of increasing the quadratic drag is to increase the Nusselt 
number, the effect of a given amount of quadratic drag being less dramatic if M is large. 
We note here that although at first sight it might be considered as an unrealistically 
high value, the case of M = 10 is well in line with the experimental results obtained very 
recently by Givler & Altobelli (1994) for the viscosity ratio for flow through high- 
porosity media. 

The effect of Nu of varying Da, with M fixed at 10, is shown in the lower part of 
figure 2. For small values of F, the values of Nu again agree with (24), the asymptotic 
values for Da = 0.001, 0.01, 1 being 5.129, 4.431, 4.122, respectively. In accordance 
with the above asymptotic result, Nu tends to the 'slug flow' value 6 when F becomes 
large, no matter what the value of Da is. 

The way in which the velocity and temperature profiles change with Da, F, and A4 
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FIGURE 3. Viscosity ratio, M ,  effect on ( a )  velocity u and (b )  temperature f half-channel profiles 
for the isoflux surface case. 

is shown in figures 3, 4 and 5 for isoflux surfaces. Figure 3 is for fixed Forchheimer 
number, F = 100, and for fixed Darcy number, Da = 1, though for ease of comparison 
the asymptotic temperature profiles for Da-t  0 and for Da+ 00 are also displayed. 
Variation of M has a dramatic effect of the velocity profile but considerably less effect 
on the temperature profile. It follows from (7) that (MDa)''' is a measure of the 
thickness of the momentum boundary layer, and the calculated results agree with that 
fact. There is no similar thermal boundary layer for the present situation. 

The effect of varying F, for fixed values of Da and M ,  is shown in figure 4. The way 
in which the velocity profile is flattened as F increases is clearly shown. This, of course, 
lies behind the increase of the Nusselt number which we noted when discussing figure 
2. Simultaneously, the mean value of our non-dimensional velocity is substantially 
reduced. This is as expected, because the physical velocity has been scaled using a 
quantity proportional to the applied pressure gradient, and for large F the physical 
velocity must be approximately proportional to the square root of the pressure 
gradient. Again, the temperature profile is not greatly altered as F increases, but there 
is a convergence towards the parabolic profile given by (27). 

Finally, in figure 5 we see the effect of varying Da, with M and F held constant. The 
velocity profile becomes flatter, and the mean non-dimensional velocity becomes 
smaller, as Da becomes smaller. This is as expected, since small Da corresponds to 
relatively small permeability, and hence to less flow for a given pressure gradient. 
Simultaneously, the effect of the Brinkman term is confined to a thinner boundary 
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FIGURE 4. Forchheimer number, F, effect on (a)  velocity u and ( b )  temperature f half-channel 
profiles for the isoflux surface case. 

layer. The change in the temperature profile is also as expected. Again the parabolic 
profile is approached as Da+O. 

Vafai & Kim (1989, p. 1106) wrote that ‘the Nusselt number increases with an 
increase in the inertia parameter. This is because an increase in the inertia parameter, 
due to a more vigorous mixing of the fluid, causes a more uniform velocity profile. ’ It 
is true that hydrodynamic dispersion increases as the flow velocity increases, but there 
is no major change here analogous to that which occurs when there is a transition from 
laminar to turbulent flow in a clear fluid. Rather, a basic feature of channel flow in a 
dense porous medium is the tendency for the flow to be uniform except in a boundary 
layer adjacent to the wall. As the velocity increases, the total Darcy-Forchheimer drag 
increases in the bulk of the medium. Near the wall, this must be balanced by an 
increased frictional drag, and this requires a greater shear. This implies that a thinner 
boundary layer must be present for high-speed flow. 

It is interesting to explain why there is a significant increase in the Nusselt number 
for a relatively high-permeability medium as the inertia parameter increases. One 
cannot explain this by a flattening of the temperature profile. Our results (and those 
obtained by Vafai & Kim, 1989) show that the increase in F can cause the Nusselt 
number to increase by an amount as large as 50 O/O. The maximum change in the shape 
of the temperature distribution is less than 20% and, in any case, an increase in F 
causes a sharpening, not a flattening, of the temperature profile, as shown by our figure 
4. The important thing is the way in which the mean temperature is defined (see (13)). 
The temperature is weighted by the velocity. When one has slug flow, T, is just the 
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FIGURE 5 .  Darcy number, Da, effect on (a) velocity u and (b)  temperature f half-channel 
for the isoflux surface case. 

profiles 

ordinary average temperature. When one has a velocity profile with less flow near the 
walls than in mid-channel (as in the case of the parabolic profile), the portion further 
from the walls is weighted higher than that near the walls. Since the temperature 
decreases monotonically away from the walls, the effect of this differential weighting 
is to increase (T, - T,). The effect of an increase in F is to produce a more slug-like 
flow, and this directly decreases ( Tu, - T,), and this leads, via the factor ( Tu, - T,)-' in 
the definition of Nu (equation (14)), to an increase in Nu. 

5. Isothermal surfaces : numerical results and discussion 
Figure 6(a )  shows the Nusselt number and figure 6(b)  the temperature distribution 

for isothermal surfaces. The isothermal case Nusselt number is slightly smaller than for 
constant-flux boundaries, and we would expect this trend to continue for general values 
of F and Da. The Nusselt number is smaller because the temperature difference 
(T, - q,,) is l%rger, because in turn the temperature profile is more peaked, because the 
extra factor T in the right-hand side of (26) (cf. (17)) means that the curvature of the 
profile is greater in the centre of the channel than near the walls, because the convective 
heat transfer is greater in the centre of the channel than nearer the walls in the case of 
constant-temperature boundaries (rather than constant as in the case of constant-flux 
boundaries), because the axial component of the temperature gradient increases with 
distance from the wall (rather than being constant), because of the first law of 
thermodynamics. 
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FIGURE 6. (a) Nusselt number and (b )  temperature for isothermal surfaces case. 

The effect of changes in the values of the parameters M ,  Da and F appears to be 
primarily a consequence of changes of the velocity profile, while the change from 
constant flux to constant temperature is clearly a thermal effect. It is plausible that 
these two effects might be only loosely coupled. This suggested to us that a reasonable 
estimate of Nu’ might be obtained from our calculated results for constant flux 
boundaries by introducing a new linear ordinal scale in figure 2, with the mark 
Nu = 4.12 replaced by Nu’ = 3.77 and with the mark Nu = 6.00 replaced by 
Nu’ = 4.93. This is equivalent to making the transformation 

NU’ = 3.77 + 0.6 1 7 (NU - 4.12). (30) 
The computed values of Nu’ presented in figure 6 are in fact in approximate accord 
with this relationship. 

6. Conclusions 
We have performed a fresh theoretical analysis of fully developed forced convection 

in a fluid-saturated porous-medium channel bounded by parallel plates. Our general 
solution, with no restrictions, extends existing solutions to all values of the Darcy 
number and Forchheimer inertia coefficient. It also applies to a medium with effective 
viscosity different from the fluid viscosity. The result is an efficient and broad tool for 
predicting transport phenomena even within high-permeability media. For the isoflux 
case, the solution is accurate to the extent that it predicts exactly the flow and thermal 
characteristics of known asymptotic regimes. 
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With the aid of our theoretical solution of the Brinkman-Forchheimer extension of 
Darcy’s equation, we have elucidated the effects of quadratic drag and boundary 
friction on fully developed forced convection in a saturated porous medium confined 
between isoflux or isothermal parallel plates. For each type of boundary, the 
temperature profile is little changed as a result of variation of the viscosity ratio, Darcy 
number or Forchheimer number. It is slightly more peaked when Da is small or when 
F is large, and especially so when M is small. On the other hand, the Nusselt number 
is significantly altered, primarily as a direct consequence of the change in velocity 
profile. 

In particular, for the case of isoflux surfaces, the following holds. When 
simultaneously Da is large and I: is small, the velocity profile is approximately 
parabolic and the Nusselt number is near 70/17 (a lower bound). When either Da is 
sufficiently small or F is sufficiently large (the criterion being quickly reached when M 
is relatively small), the velocity profile is approximately uniform (apart from a thin 
boundary layer) and the Nusselt number is near 6 (an upper bound). For the case of 
isothermal surfaces the story is similar, but the Nusselt numbers are smaller. The sets 
of Nusselt numbers for the two cases are related approximately by (30). 

We also note that the numerical results of Kaviany (1985) show that the velocity field 
generally develops to its steady-state form in a short distance from the entrance, of 
order (E/Y), where R is the entrance velocity (the same was also predicted by Vafai & 
Kim (1981), for flow over a plate in a saturated porous medium). The exception is when 
Da > 1. For this case, a fully-numerical approach is probably the best method of 
investigation. The problem of thermal development is of more immediate interest. Now 
that we have the velocity distribution in closed form, a series solution of the Graetz 
type is a viable alternative to a fully-numerical solution. 
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Note added in proof. Professor P. Cheng has drawn our attention to Cheng, Hsu & 
Chowdhury (1988). In this paper an analytical solution for the velocity, which is based 
on a boundary layer approximation and so is valid for small Da only, and which is 
essentially the same as that given by Vafai & Kim (1989) and is related to the 
asymptotic solution given by Vafai & Thiyagaraja (1987), is presented. 
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